

Computer Science – Year Group Overview

 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6

Year

10

1.1 Systems Architecture

1.2 Memory and Storage

1.2 Memory and

Storage

1.3 Computer Networks,

Connections and

Protocols

1.4 Network Security

1.5 Systems Software

1.6 Ethical, legal,

cultural, environmental

impacts of digital

technology

Careers

Architecture of the CPU

 The purpose of the

CPU.

 Common CPU

components and their

function.

 Von Neumann

architecture.

CPU performance

 How common

characteristics of CPUs

affect their

performance.

Embedded Systems

 The purpose and

characteristics of

embedded systems.

 Examples of

embedded systems.

Units of Storage

 The units of data

storage.

 How data needs to be

converted into a binary

format to be processed

by a computer.

 Data capacity and

calculation of data

capacity requirements.

Primary Storage (Memory)

 The need for primary

storage The difference

between RAM and

ROM.

 The purpose of ROM in

a computer system.

 The purpose of RAM in

a computer system.

 Virtual memory.

Secondary Storage

 The need for secondary

storage.

 Common types of

storage.

 Suitable storage

devices and storage

Data Storage (Image)

 How an image is

represented as a

series of pixels,

represented in

binary.

 Metadata.

 The effect of colour

depth and

resolution on the

quality of an image

& the size of an

image.

Data Storage (Sound)

 How sound can be

sampled and stored

in digital form.

 The effect of sample

rate, duration and

bit depth on:

playback quality &

size of a sound file.

Compression

 The need for

compression.

 Types of

compression.

Networks and Topologies

 Types of network.

 Factors that affect the

performance of

networks.

 The different roles of

computers in a client-

server and a peer-to-

peer network.

 The hardware needed

to connect stand-alone

computers into a Local

Area Network.

 The Internet as a

worldwide collection of

computer networks.

 Star and Mesh network

topologies.

Wired and Wireless Net

 Modes of connection

Encryption.

 IP addressing and MAC

addressing Standards.

Protocols and Layers

 Common protocols:

o TCP/IP

o HTTP

o HTTPS

Threats

Forms of attack:

● Malware.

● Social engineering.

● Brute-force attacks.

● Denial of service attacks.

● Data interception and

theft.

● The concept of SQL

injection.

Vulnerabilities

Common prevention methods:

● Penetration testing.

● Anti-malware software.

● Firewalls.

● User success levels.

● Passwords.

● Encryption.

● Physical security.

Operating Systems

The purpose and functionality

of operating systems.

Utility Software

The purpose and functionality

of utility software.

Ethics

Impacts of digital

technology on wider

society including:

● Ethical.

● Legal.

● Cultural.

● Environmental.

● Privacy.

Legislation

Legislation relevant to

Computer Science:

● The Data Protection

Act 2018.

● Computer Misuse Act

1990.

● Copyright Designs and

Patents Act 1988.

● Software licences (i.e.

open source and

proprietary).

Term 4: Network Manager

While studying the networks and

topologies students will have the

chance to discover the careers

opportunities within network

management.

Term 5: White Hat Hackers

While studying about hacking and the

different types of threat online students

will have the opportunity to explore the

role of a white hat hacker with our

careers partner.

Term 5: Software Developer

While studying operating system and

utility software students will have the

chance to discover the careers

opportunities within software

development.

media for a given

application.

 The advantages and

disadvantages of

different storage.

Data Storage (Numbers)

 How to add two binary

integers together.

 How to convert positive

denary whole numbers

to binary numbers.

 How to convert positive

denary whole numbers

into 2-digit

hexadecimal numbers

and vice versa.

 How to convert binary

integers to their

hexadecimal

equivalents and vice

versa.

 Binary shifts.

Data Storage (Character)

ASCII and Unicode

 The use of binary codes

to represent

characters.

 The term ‘character

set’.

 The relationship

between the number of

bits per character in a

character set, and the

number of characters

which can be

represented.

 o FTP

o POP

o IMAP

o SMTP

 The concept of layers.

2.2 Programming

fundamentals

2.2 Programming

fundamentals

2.2 Programming

fundamentals

2.3 Producing Robust

Programmes

2.2 Programming

fundamentals

Practical Programming

Practical Programming

Programming Fundamentals

● Introduction to

Python.

● Use of variables,

constants, operators,

inputs, outputs and

assignments.

● IDLE.

● PRINT and INPUT.

● Data Types.

● Arithmetic operators.

● Comparison operators.

● Sequence.

● Selection:

o IF

o ELIF

o ELSE

Iteration

 Count and controlled

loops.

 WHILE

 FOR CSV

 OPEN

 CLOSE

 READ

 WRITE

String Manipulation

 Concatenation.

 Slicing.

 Searching.

Additional programming

techniques

 The use of basic

string manipulation.

 The use of basic file

handling

operations.

 The use of records

to store data.

 The use of arrays (or

equivalent) when

solving problems

including 1D and 2D

arrays.

 Random number

generations.

Functions

● Subprograms.

● Functions.

● Parameters.

Defensive Design

Defensive design

considerations:

 Anticipating misuse.

 Authentication.

Input validation

Maintainability:

 Use of sub programs.

 Naming conventions.

 Indentation.

 Commenting.

Testing

The purpose of testing Types of

testing:

 Iterative.

 Final/terminal.

Identify syntax and logic errors.

Selecting and using suitable

test data:

 Normal.

 Boundary.

 Invalid/Erroneous.

 Refining algorithms.

Noel’s Music Quiz – Extended

Programming Project

 The use of basic string

manipulation.

 The use of records to

store data.

 The use of arrays (or

equivalent) when solving

problems, including both

one-dimensional and

two-dimensional arrays.

 How to use subprograms

(functions and

procedures) to produce

structured code.

 Random number

generation.

Noel’s Music Quiz –

Extended Programming

Project

 The use of basic string

manipulation.

 The use of records to

store data.

 The use of arrays (or

equivalent) when

solving problems,

including both one-

dimensional and two-

dimensional arrays.

 How to use

subprograms

(functions and

procedures) to

produce structured

code.

 Random number

generation.

Computer Science – Year Group Overview

 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6

Year
11

2.1 Algorithms

2.2 Programming

fundamentals

2.1 Algorithms

2.4 Boolean Logic

2.5 Programming Languages

and Integrated

Development Environments

Pre-Exam Revision

Computational Thinking

Principles of computational

thinking:

 Abstraction.

 Decomposition.

 Algorithmic Thinking.

Designing, creating and refining

algorithms

 Identify the inputs, processes,

and outputs for a problem.

 Structure diagrams.

 Create, interpret, correct,

complete, and refine

algorithms.

 Identify common errors.

 Trace tables.

Additional Programming

Techniques

Use of SQL to search for data:

 SELECT

 FROM

 UPDATE

 INSET

 INTO

Searching and Sorting

Standard searching algorithms:

 Binary search.

 Linear search.

Standard sorting algorithms:

 Bubble sort.

 Merge sort.

 Insertion sort.

Boolean Logic

 Simple logic diagrams using

the operators AND, OR and

NOT.

 Truth tables.

 Combining Boolean operators

using AND, OR and NOT.

 Applying logical operators in

truth tables to solve problems.

Languages

 Characteristics and purpose of

different levels of

programming language.

 The purpose of translators.

 The characteristics of a

compiler and an interpreter.

The Integrated Development

Environment

Common tools and facilities

available in an Integrated

Development Environment (IDE):

 Editors.

 Error diagnostics.

 Run-time environment.

 Translators.

Recap Units 1 & 2 based on the

QLA of assessments.

Programming Evidence

Functions & Procedures

Application of algorithms Application of algorithms

Noel’s Music Quiz – Extended

Programming Project

 The use of basic string

manipulation.

 The use of records to store

data.

 The use of arrays (or

equivalent) when solving

problems, including both one-

dimensional and two-

dimensional arrays.

 How to use subprograms

(functions and procedures) to

produce structured code.

 Random number generation.

Create, interpret, correct,

complete and refine algorithms

using;

 Pseudocode.

 Flowcharts.

Create, interpret, correct,

complete and refine algorithms

using;

 Reference language/high-level

programming language.

