

Computing Overview Key Stage 3 2025/26

Year 7

Term 1 4 3 3 5 6

Topic
E-Safety

Computational
Thinking

Micro:bit
Data Storage

JavaScript Digital Solutions

Enquiry
Question Is the internet a safe

and inclusive
environment?

How can we learn to
solve computational
problems efficiently?

How can we develop
coding skills working
with materials and
electronics?

How do
computers make
decisions and
perform
instructions?

How can we
create computer
programmes by
writing lines of
code?

How can we use
different digital
tools together to
solve a real
problem?

Big Ideas/
Key Concepts

● The internet can
be a place where
young people are
exploited

● The internet is
not always safe

● The ways and
means we can
protect ourselves
and others when
online

● Abstraction as a
way to remove
unnecessary
information

● Decomposition as a
tool to break
problems down

● Pattern recognition
in problems

● Flowcharts to
plan algorithms

● Pseudocode to plan
algorithms

● Using variables to
store data and
information

● Using loops to
perform iteration

● Using print
statements to
execute messages

● Using coding skills
to develop
animated programs

● All data is
represented as
binary digits

● Calculations
can be
performed in
binary

● Hexadecimal
(hex) is also a
commonly
used number
system

● Programs use
simple
comparisons to
help make
decisions

● Boolean
(binary) logic
is a form of
algebra where
all values are

● Using
variables to
store data

● Creating
arrays to store
multiple
values

● Using
methods to
manipulate list
contents

● Using casting
to convert
user input into
numbers

● Using
technology not
just to
consume, but
to design and
make original
products.

● Selecting and
combining
multiple
applications
and devices to
achieve a goal.

● Collecting,
organising, and
interpreting
data to draw
conclusions or
support
decision-
making.

● Creating digital
outcomes that

either True or
False

meet the needs
of a specific
audience or
user group.

Key
Knowledge
and Skills

● To describe ways
in which we can
stay safe online

● To describe the
most effective
ways to create
and store
passwords

● To share and
present with
others

● To describe what
the four branches
of computational
thinking are

● To be able to solve
computational
thinking problems

● To describe
iteration

● To describe what a
print statement
does

● To be able to run
code on a micro:bit

● To be able to create
a ‘for’ loop

● To be able to create
a ‘while’ loop

● How to convert
denary, binary
and
hexadecimal

● How to
perform binary
number
addition

● To calculate an
output from
logic circuits
and to state an
output from
logic gates

● To be able to
write error
free and
robust code

● To able to
apply problem
solving skills in
a range of
real-life
scenarios

● To identify
and amend
syntax errors

● To be able
identify
variables and
describe the
purpose of a
given line of
code

● Knowing how
to choose and
use a range of
software (e.g.,
spreadsheets,
presentation
tools, coding
platforms) and
combine them
effectively.

● Understanding
how to collect,
organise, and
analyse data,
then present it
clearly using
charts, graphs,
or digital
visualisations.

● Working with
others, often
across devices,
to share ideas
and produce
joint digital
projects.

● Applying user-
focused design:
identifying an
audience,
planning a
solution,
testing it, and

refining based
on feedback.

End Point Students are aware of
the dangers when
browsing the web and
how to use a mobile
device safely
Students can list and
describe ways in
which to stay safe
online

Students can apply
computational thinking
to a range of problems
when using a computer

Students can use coding
skills to build their own
programs using a
micro:bit
Students can analyse
and annotate their
code, finding errors and
areas of improvement

Students
understand how
numbers are
represented in
binary and hex and
can carry out
simple operations
on binary numbers
Students
understand simple
Boolean logic [AND,
OR and NOT] and
some uses in
circuits and
programming

Students can
confidently write
robust code and
display their work
through a well
kept and organised
programming diary

By the end of this
unit, pupils will be
able to design and
complete a creative
digital project that
combines multiple
applications and
devices. They will
collect and analyse
data, make
purposeful choices
about tools, and
produce an
outcome that
effectively meets
the needs of
identified users.

Prior
Knowledge

Real-life experience of
the internet and web
applications

Creating algorithms
(micro:bit)

KS2 blockly coding
(Scratch and code.org)

Mathematical
operations
Sums

Creating
algorithms
(micro:bit)

Problem Solving
(Computational
Thinking)

Prior use of Google
Docs and Slides,
including limited
formatting/researc
h skills and
programming skills
developed in terms
2 and 5.

Common
Misconceptio
ns

● Passwords are
short and don’t
include numbers
and symbols

● What we visit
online is not
recorded/tracked

● Pattern recognition
is looking for the
same thing in two
different scenarios

● Computational
thinking is how
computers think

● Decomposition is
similar to baking

● Interpreting errors
messages

● Ensuring blocks of
code are embedded
within the micro:bit
and not standalone

● Assuming all
hexadecimal
numbers must
include letters
Logic gates are
not made of
anything else
(no prior
knowledge of

● Confusing
assignments
with equality

● Believing
Javascript is
the same as
standard
English

● One app does
everything.

● Data is just
numbers.

● The project is
for me, not the
user.

switches /
transistors)

● Missing
brackets or ;

● The concept
of variables
storing data

Key Words ● Safety
● Digital footprint
● Radicalisation
● Relationships
● Actions and

effects
● Threats

● Abstract
● Decompose
● Pattern
● Flowchart
● Algorithm
● Pseudocode

● Loop
● Print
● Sound
● Variable
● For
● While

● Binary
● Denary
● Hexadecimal
● Boolean
● Logic

● Variable
● Array
● Const
● Let
● Console.log

● Application
● Device
● Data
● Analysis
● Audience
● Integration
● Creativity
● User

Year 8

Term 1 2 3 4 5 6

Topic
E-Safety Small Basic Computer Systems Python

Search & Sort
Algorithms

Ethics & Law

Enquiry
Question

How can we
behave in a way
that is appropriate
and respectful
online?

How can we use a
programming
language to
follow/execute
instructions?

How does hardware and
software determine our
use and control of
computer systems?

How can we use a
high-level
programming
language to
create simple
programmes?

How do different
algorithms solve the
same problem in
faster or slower
ways, and why does
that matter?

What role does AI
play in our lives?

Big Ideas/ Key
concepts

● Online identity –
protecting
ourselves/others

● Correctly
presenting
ourselves online

● Security – how to
safeguard social
media/our data

● Risks (spam,
hate, phishing,
viruses)

● Using a
programming
language to
perform
instructions on a
keyboard

● The role and
importance of inputs
and outputs

● The role of hardware
within a computer
system

● The role of primary and
secondary storage

● Using
commands,
inputs and
outputs to
create Python
animations

● Understanding
how functions
and loops work
in Python

● Compare the
efficiency of
searching and
sorting algorithms

● Understand the
importance of
algorithm choice
in software
development

● Think critically
about when and
why to use one
algorithm over
another

● Copyright
● GDPR
● Data protection
● AI (Artificial

Intelligence)
● Computers in the

workplace
● Deepfakes

Key Knowledge
and skills

● Students can
identify spam,
phishing and
inappropriate
content

● Know how to set
up social media
accounts so that
they are private

● Students can use
functions

● Students develop
problem solving
skills

● Students develop
computational
thinking skills

● Students can identify
what inputs and
outputs are

● Students can identify
the purpose of primary
and secondary storage

● Students can identify
the roles of each
component of
computer hardware

● Students can
use problem
solving skills in
code

● Students can
read and code
using a high-
level
programming
language

● Students can
discuss and
explain the
difference
between binary
and linear search
algorithms

● students can
practically explore
how bubble,

● Students can
describe features
of key laws and
acts associated
with computing

● Students can
identify impacts
of technology
and how these
are experienced,

● Students can be

respectful whilst
browsing and
interacting with
others online

● Students can
identify and
rectify logic
and syntax
errors in code

insertion and
merge sort
algorithms handle
data sets

negated or
adapted to.

End Point Students can identify
risks when browsing
the internet
Students are able to
differentiate
between email and
spam
Students are aware
of the help available
if attacked online

Students can create
effective code and
programs that perform
simple to intermediate
tasks

Students can identify key
software and hardware of a
computer system
Students can make
informed decisions about
what equipment is best
suited for a specific task
or scenario

Students can write
error free and
robust code using a
high level
programming
language

students can both
practically and
theoretically
demonstrate how
common search and
sort algorithms work

Students can
understand the
impact of technology
on individuals,
organisations and the
planet through a
range of real-world
examples

Prior
Knowledge

E-safety – is the
internet safe?

Computational thinking User experience of
computer systems

Small Basic Computational
thinking
Programming &
Selection

E-safety and
Misinformation

Common
Misconceptions

● Spam is sent to
elderly and
vulnerable only

● It is easy to block
someone online

● There are no
repercussions to
your behaviour
and content
share online

● Confusing
TextWindow.ReadN
umber() with
TextWindow.Read()
for numeric input

● Forgetting that
arrays in Small Basic
start at index 1, not
0

● Using incorrect
syntax for loops and
conditionals (e.g.
missing EndFor,
EndIf)

● Software is tangible
● Computers are just

used in schools/offices
● A phone or tablet is

not a computer

● Using = instead
of == in
conditional
statements

● Misunderstand
ing indentation
and code
blocks

● Treating strings
and numbers
as
interchangeabl
e without
conversion

● Binary search
always works
faster than linear
search

● All sorting
algorithms work
the same way, just
with different
names.

● Concerns about
radiation from
mobile phones

● Legitimate use of
digital content
and risks of
copyright
infringement

Key Words ● Spam
● Phishing

● Input
● Output

● Memory
● Cache

● Input
● Output

● Search
● Array

● Privacy
● Ethical

● Hate
● Cyberbullying
● Identity
● Passwords

● Line
● Print
● Loop
● Draw
● Penup
● Pendown
● Speed
● Variable

● Registers
● CPU
● Hard drive
● Primary / Secondary

● Selection
● Casting
● Variable

● Sort
● Merge
● Insert
● Ordered

● Environmental
● Cultural
● Data legislation

Year 9

Term 1 2 3 5 5 6

Topic E-Safety Python Programming Networks Augmented Reality Processors and Data Boolean Logic

Enquiry
Question

What are some of the
dangers and risks to
young adults and
children when using
the internet?

How can I create
programs using a
high-level
programming
language?

What are the ‘internet’
and the ‘World Wide
Web’, what are the
benefits of networks?

How can I explore
augmented reality
to create unique
images and
graphics?

How does a computer
process different data
types?

In what ways can
different combinations
of logic gates be used to
build and simplify
Boolean expressions?

Big Ideas/
Key concepts

● Types of grooming
● Types of online

abuse
● Reporting abuse
● Spotting abuse
● The internet as a

tool for
abuse/spreading
hate

● Identifying syntax
and logic errors

● Creating variables
● Creating inputs
● Lists and functions
● Loops

● Data transmission
● Topologies
● Wired/Wireless

connections
● Network hardware
● The internet

● Augmented
reality

● Enhance real
artefacts with AR
generated
information

● Designers use
Adobe Aero to
create AR
content

● The purpose of the
CPU, common
components and their
function

● Data capacity
and file types

● Common scenarios
when compression
may be needed

● Logical decisions
can be
represented in
multiple ways

● Boolean
expressions and
logic circuits can
often be simplified

● Logic gates are the
fundamental
building blocks of
digital systems

● When combined,
they form the
basis for complex
circuits

Key
Knowledge
and skills

● Students can
identify abuse and
explain types

● Students can
discuss how
extremists use the
internet to groom

● Students create
effective websites

● Students can create
robust code

● Students can
document their
process

● Students can reflect
on programming

● Students describe
components of
networks and how
they work together

● Students know the
difference between
the internet, its
services, and the
World Wide Web

● Students can
overlay digital
content onto
real-life
environments
and objects.

● Students are able
to create
graphics which
are both

● Students can identify
the main CPU
components

● Students familiar with
data units

● Students know storage
devices have different
capacities

● Students know the
advantages and

● Recognising and
understanding the
standard logic
gates
(AND,OR,NOT)

● Being able to
create truth tables
for given logic
gates or
expressions, and

/multimedia
content

interactive and
immersive

disadvantages of
compression

interpret how
inputs determine
outputs.

● Writing Boolean
expressions to
represent logic
circuits

End Point Students can identify

the various types of
abuse and grooming
and explain these
through their own
website

Students can
create robust
programmes that
imitate real-life
scenarios

Students can
identify the
hardware used in
computer networks
and explain the
benefits of
different network
types

Students can
create digital
artefacts for a
given audience,
with attention to
design and
usability

Students can identify how a
computer processor works
Students can make informed
decisions about data units, types and
file compression

By the end of this unit, students will
be able to confidently represent,
construct, and simplify Boolean
expressions and logic circuits, using
truth tables and standard gates to
design efficient solutions that model
real-world computational problems.

Prior
Knowledge

E-safety
How we behave
online

Python, Small
Basic, micro:bit

Computer systems,
hardware

Prior use of digital
graphic
applications

Computer systems, hardware Data Storage and Programming
(Small Basic, JS and Python)

Common
Misconcepti
ons

● Radicalisation is
only connected
to religion

● Grooming just
involves elderly
males and young
girls

● Abuse doesn’t
hurt if it is only
online

● Sexual abuse is
physical and can’t
take place online

● Live Streaming is
harmless

● Python
understands
plain English

● X = X and not *
● Brackets don’t

have to be
closed

● Spellings are in
UK English
(Python uses
US English)

● Star topology –
can assume
this is how it is
actually
configured
(server in the
middle and
nodes in a
circle)

● Wi-Fi connects
you directly to
internet

● Servers are big

● Differences
between AR
and AI

● Lack of
familiar
examples of
the potential
of AR

● Clock speed (More cycles per
second doesn’t automatically
mean faster.)

● Some CPUs do more in each
clock cycle, or memory may not
be able to keep up

● Mixing up gate symbols
● NOT flips all values in a

circuit
● The longest or most literal

Boolean expression is
always correct

● Some assume Boolean
values are just numbers
(e.g., 1 always means “true”
in every context), without
recognising they represent
states of logic, not
quantities.

Key Words ● Extremism
● Abuse
● Groom
● Radicalisation
● Incitement
● County lines
● Exploitation

● Loop
● Error
● Syntax
● Logic
● Iteration
● Function
● Variable
● Boolean

● Connectivity
● Protocol
● Server
● Router
● Switch
● Hub

● Asset
● Scene
● Tap
● Orbit
● Audio
● Insert
● Show
● Hide

● CPU
● ALU
● Control Unit
● Registers
● Data
● Compression

● AND
● OR
● NOT
● Boolean Logic
● Expression
● Truth Table

Year 10 2024-2026

Term 1 2 3 4 5 6

Topic
1.1.1 Architecture of the
CPU

1.1.2 CPU performance

1.1.3 Embedded
systems

1.2.1 Primary storage
(Memory)

1.2.2 Secondary storage
(Memory)

2.2.1 Programming
fundamentals

1.2.3 Units

1.2.4 Data Storage

1.2.5 Compression

1.3.1 Networks and
topologies

2.2.1 Programming
fundamentals

2.2.2 Data types

1.3.1 Networks and
topologies

1.3.2 Wired and
wireless networks,
protocols and layers

1.4.1 Threats to
computer systems
and networks

1.4.2 Identifying and
preventing
vulnerabilities

2.2.1 Programming
fundamentals

1.5 Operating
systems

1.5.2 Utilities

1.6 Ethical,
Environmental,
Cultural and Legal
Issues

2.2.3 Additional
programming
techniques

1.6 Ethical,
Environmental,
Cultural and Legal
Issues

2.1.2 Designing,
creating and refining
algorithms

2.1.3 Searching and
sorting algorithms

2.1.1 Computational
thinking

2.2.3 Additional
programming
techniques

2.4.1 Boolean logic

Enquiry
Question

"How does the design
and performance of
computer systems
impact our everyday use
of technology?"

"How is data stored,
shared, and made more
efficient in the digital
world?"

"How do computer
systems connect and
stay secure in a
world built on code?"

"Who is responsible
when technology
causes harm?"

"Do digital laws do
enough to protect
people and their
data?"

"How do computers
use logic to make
decisions?"

Big Ideas/ Key
Concepts

● The CPU is the "brain"
of the computer,
processing
instructions via a
structured cycle.

● Data and instructions
are stored in memory
and moved via buses
(address, data,
control).

● CPU performance is
about speed and
efficiency in executing
instructions.

● Without sufficient
RAM, systems
become slower or
unstable when
multitasking.

● Secondary storage is
essential for long-
term data retention.

● The choice of storage
affects speed,
durability, and system
cost.

● Programming uses
structured logic to
solve problems.

● Code is written using
predictable constructs
like loops, conditions,
and variables.

● Understanding how
data is measured and
scaled

● Everything we see,
hear, and use on a
computer is stored as
binary data.

● Compression enables
faster transmission and
storage, especially for
multimedia.

● The structure of a
network (topology)
affects its performance,
reliability, and
scalability.

● Fundamental skills build
the foundation for
developing more
complex algorithms and
programs.

● Everything is
Connected

● Communication
Needs Rules

● Digital Systems
Must Be Defended

● Secure Design is
Smart Design

● Code Controls the
Machine

● The Operating
System is the Boss

● Utility Software
Keeps Systems
Healthy

● Tech Has
Consequences

● What is the
responsibility of
developers and
users?

● Powerful Code =
Flexible Software
(The use of sub-
programs)

● Systems Are Built
in Layers (The OS,
utilities, hardware,
and applications all
work together)

● Technology
Shapes Society

● digital divide
● Legal frameworks

such as Data
Protection Act,
Computer Misuse
Act, Copyright,
Designs and
Patents Act and
Creative
Commons
Licensing

● Algorithms Make
the Digital World
Work

● Efficient
algorithms are
essential for fast,
reliable
computing.

● Design basic
flowcharts to
solve problems

● Think Like a
Computer
Scientist and use
key concepts such
as
Decomposition,
Abstraction
,Algorithmic
Thinking and
Pattern
recognition

● Powerful Code
Solves Real
Problems

● Logic Powers
Everything

● Computers make
decisions using
simple logic—just
1s and 0s.

Key Knowledge
and Skills

● Describe the purpose
and function of key
CPU components

● Compare the impact
of different factors on
CPU performance

● Identify and explain
the role of embedded
systems in real-world
devices

● Differentiate between
primary and
secondary storage
types

● Evaluate the
suitability of storage
devices for different
uses

● Write code that
features inputs,
outputs, casting and
loops.

● Convert between
different units of data
storage

● Explain how characters,
images, and sound are
represented in binary

● Describe and compare
different methods of
compression

● Identify and describe
different network types
and topologies

● Use programming
constructs and data
types to write and
understand code

● Describe different
types of networks
and network
topologies

● Compare the
characteristics of
wired and wireless
networks

● Explain the
purpose of
common network
protocols and the
layers of the
TCP/IP model

● Identify common
threats to
computer systems
and how they
affect security

● Suggest and
explain methods
for preventing and
detecting cyber
security
vulnerabilities

● Explain the
purpose and
functions of an
operating system

● Describe different
types of utility
software and their
uses

● Compare backup
types and data
management tools

● Discuss the ethical,
environmental,
and cultural
impacts of digital
technology

● Identify and
explain key legal
issues relating to
computer use and
data protection

● Discuss the
ethical,
environmental,
and cultural
implications of
computing
technologies

● Identify and
explain key legal
frameworks
related to digital
technology and
data use

● Describe how
different
searching
algorithms work
and when to use
them

● Explain how
different sorting
algorithms
function and
compare their
efficiency

● Select and justify

appropriate
algorithms for
given scenarios or
data sets

● Apply
decomposition,
abstraction, and
algorithmic
thinking to solve
problems

● Design and use
subprograms to
structure and
simplify code

● Read from and
write to external
files using
programming
techniques

● Use Boolean logic
and truth tables to
construct and
evaluate logical
expressions

● Implement
validation,
authentication,
and randomisation
within programs

End Point By the end of studying
these topics, students
should understand how

By the end of studying these
topics, students should be
able to:

By the end of studying
these topics, students
should understand how

By the end of studying
these topics, students
should understand the

By the end of studying
these topics, students
should be able to

By the end of studying
these topics, students
should be able to apply

computers process, store,
and retrieve data,
including the role of the
CPU, different types of
memory and storage, and
the basics of writing and
understanding programs.
They should be able to
explain how CPU
performance is influenced,
describe the function of
embedded systems, and
apply programming
fundamentals like
variables, control
structures, and data
types—preparing them for
exam questions and
practical coding tasks.

Understand how digital data
is measured, stored, and
represented, including
binary units, file sizes, and
different data types.

Explain how compression
reduces file size, and
identify when different
compression methods are
suitable.

Describe how computer
networks are structured and
connected, including
common topologies and key
components.

Apply core programming
principles such as variables,
selection, iteration, and
correct use of data types to
solve problems in code.

data travels through
networks, the
differences between
wired and wireless
communication, and
how protocols and
layers work together to
ensure effective data
transmission. They will
also be able to identify
common cybersecurity
threats, such as
malware and phishing,
and explain how
vulnerabilities can be
reduced using technical
and human measures.
In programming,
students will have a
solid grasp of
fundamental concepts
like variables,
input/output,
selection, and iteration,
enabling them to write
clear and logical code.
This prepares them to
approach both theory
and practical questions
with confidence,
particularly in Paper 1
(Computer Systems)
and Paper 2
(Computational
Thinking, Algorithms
and Programming).

role of operating
systems in managing
hardware and software
resources, as well as
the purpose of utility
software in maintaining
system health and
performance. They will
be aware of the ethical,
environmental,
cultural, and legal
considerations related
to computing, including
data privacy,
sustainability, and
intellectual property.
Additionally, students
will be able to apply
advanced
programming
techniques such as
subprograms, file
handling, and data
validation to create
more efficient and
reliable code. This
knowledge equips
students to handle
both theoretical
questions and practical
programming
challenges in their
exams confidently.

design, create, and
refine algorithms that
solve problems
efficiently and
effectively. They will
understand how
different searching
and sorting algorithms
work, their advantages
and limitations, and
how to choose the
best approach for a
given situation. This
knowledge enables
students to apply
algorithmic thinking in
programming tasks
and to explain their
solutions clearly in
exams.

computational thinking
skills such as
decomposition,
abstraction, and
pattern recognition to
break down complex
problems. They will be
proficient in using
additional
programming
techniques like
subprograms, file
handling, and data
validation to write
efficient and organized
code. Additionally,
students will
understand and use
Boolean logic to
control program flow
and make decisions
within algorithms. This
foundation prepares
them to solve
programming
challenges confidently
and explain their
reasoning clearly in
exams.

Prior
Knowledge

Year 8 - Computing
Hardware and Software

Year 7, 8 and 9 - Computer
Programming

Year 7 - Numbers

Year 9 - Processing &
Storage

Year 9 - Networks

Year 9 - Networks Year 9 - Ethics & Law Year 8 - Search & Sort
Algorithms

Year 9 - Ethics & Law

Year 7 - Computational
Thinking

Assessment
Objectives

AO1 - Demonstrate knowledge and understanding of the key concepts and principles of Computer Science. 30%

AO2 - Apply knowledge and understanding of the key concepts and principles of Computer Science. 40%

AO3 - Analyse problems in computational terms to make reasoned judgments and to design, program, evaluate and refine solutions. 30%

Assessment
Objectives
Covered

AO1
AO2
AO3

AO1
AO2
AO3

AO1
AO2
AO3

AO1
AO2
AO3

AO2
AO3

AO1
AO2
AO3

Assessment
Objectives
Covered with
Examples

AO1 - ‘Identify two
events that take place
during the fetch-
execute cycle’

AO2 - ‘Write the
missing arithmetic
operator for each
algorithm.’

AO3 - ‘Complete the
following pseudocode
for an algorithm to
count up how many
matches with 0
goals are stored in the
array and then print
out this value.’

AO1 - ‘Describe what
happens when the
computer converts the
music into a file.’

AO2 - ‘Complete the
table by writing the
missing denary, 8-bit
binary or hexadecimal
values.’

AO3 - ‘A programmer
creates an algorithm
using a flow chart.
Write this algorithm
using pseudocode’

AO1 - ‘Define what
is meant by a
‘network protocol’.

AO2 - ‘Give two
reasons why the
bakery may use a
star network
topology for their
LAN.’

AO3 -’A second
program needs to
perform the
following tasks:
• Input a number
from the user
• Double the
number input and
print the result
• Repeat bullets 1
and 2 until the

AO1 - ‘Identify
three ways Xander
can make use of
the file
management
facility’

AO2 - ‘Describe
the environmental
impacts of Fiona’s
decision’’

AO3 - ‘Write an
SQL statement to
display the sensor
IDs of the door
sensors that have
been
triggered for more
than 20 seconds.’

AO2 - ‘The
flowchart
statements have
been written for
the algorithm, but
the flowchart is
incomplete.
Complete the
flowchart.’

AO3 - ‘Discuss the
features, benefits
and drawbacks of
each type of
licence’

AO1 - ‘Describe the
purpose of a truth
table.’

AO2 - ‘Show how a
binary search will be
used…’

AO3 - ‘Draw a logic
circuit for P = NOT A
AND (B OR C)’

user enters a
number less than
0.
Write an algorithm
for this program’

Command
Words/Exam
Technique
Covered

Identify
List
Define
State
Tick
Show
Complete

Convert
Compare
Describe
Explain

Draw
Show
Describe
State
Identify
Complete

Complete
Discuss
Describe
Explain
Give
Identify

Complete
Discuss
Describe
Show
Tick
Explain

Draw
Show
Order
Write
Design
Give
Write

Example Exam
Question
Explored In This
Term

“Complete the
sentences by filling in
the missing words”

“Convert the denary
number 221 into 8 bit
binary”

“Describe the
benefits of the
student changing
their home LAN to
include wireless
connectivity”

“Identify three
ways Xander can
make use of the
file management
facility”

“Discuss the
ethical, legal and
cultural impacts
of this decision”

“Draw the logic
diagram
represented by
Q=A OR NOT B”

Key Words ● CPU
● Fetch–Decode–

Execute Cycle
● Register
● Clock Speed
● Core
● Embedded System
● RAM
● ROM
● Solid State Drive (SSD)
● Iteration

● Bit
● Byte
● Metadata
● ASCII
● Sampling
● Lossless
● Lossy
● Topology
● Switch
● Router
● Bandwidth

● LAN
● WAN
● Topology
● Bandwith
● Protocol
● POP
● MAC
● Firewall
● Transmission
● interception

● Multitasking
● Encryption
● Defragmentation
● Backup
● Copyright
● Data Protection
● Sustainability
● Subprogram
● File handling
● Authentication

● Privacy
● E-waste
● Digital divide
● Copyright
● Surveillance
● Linear search
● Binary search
● Bubble sort
● Merge sort
● Efficiency

● Decomposition
● Abstraction
● Algorithm
● Subprogram
● Procedure
● Validation
● Authentication
● Array
● Boolean
● Truth table

Year 11 2025-2026

Term 1 2 3 4

Topic
2.1.1 Computational thinking

2.1.2 Designing, creating and
refining algorithms

2.1.3 Searching and sorting
algorithms

2.3.1 Defensive design

2.3.2 Testing

2.4.1 Boolean logic

2.5.1 Languages

2.5.2 The Integrated
Development Environment
(IDE)

2.2.3 Additional programming
techniques

2.2.3 Additional programming techniques

Exam Preparation and Recap.

1.1.1 Architecture of the CPU

1.2.4 Data Storage

1.3.1 Networks and topologies

1.6 Ethical, Environmental, Cultural and
Legal Issues

Enquiry
Question "How can we use computational

thinking to design efficient
algorithms for solving real-world
problems?"

"How do defensive design
principles, testing methods,
and programming tools like
Boolean logic and IDEs
improve the development of
reliable and efficient
software?"

"How do additional
programming techniques like
subprograms, file handling,
and data validation enhance
the functionality and
reliability of software?"

"How do the design of computer systems
and the way data is stored, shared, and
used impact society and technology
today?"

Big Ideas/ Key
Concepts

● Clear Thinking Solves Complex
Problems

● Good Algorithms Save Time
and Resources

● Algorithms Must Be Designed,
Not Just Written

● Not All Algorithms Are Equal
● Thinking Like a Computer

Scientist Builds Better Solutions

● Reliability and Security in
Software

● Ensuring Software Works as
Intended

● Decision-Making Through
Logic

● Communication Between
Humans and Machines

● Tools That Support Effective
Software Development

● Subprograms
– Understanding and using
functions and procedures to
structure code for clarity
and reuse.

● File Handling
– Reading from and writing
to external files

● Data Validation and
Authentication
– Implementing input
validation techniques to
ensure data integrity.

● The CPU as The Brain of the Computer
● Representing and Storing Information

Digitally
● Connecting Computers for

Communication and Sharing
● Responsible Computing in a Connected

World

● Random Number

Generation
– Using random functions in
programs

● Using Arrays (or Lists)

– Creating, accessing,
updating, and iterating
through arrays or lists to
store collections of data
efficiently.

Key Knowledge
and Skills

● Apply computational thinking
techniques

● Design and represent
algorithms clearly

● Analyse and refine algorithms
for accuracy and efficiency

● Understand and compare
common searching and sorting
algorithms

● Select appropriate algorithms
based on context

● Apply defensive
programming techniques

● Understand and carry out
different types of testing

● Use Boolean logic to control
program flow

● Compare and evaluate
programming languages and
translators

● Use features of an IDE to
develop and debug code

● Design and use
subprograms to structure
and simplify code

● Read from and write to

external files using
programming techniques

● Identify and describe key components of
the CPU

● Explain how different types of data (text,
images, sound) are stored in binarY

● Compare different network topologies
and their advantages/disadvantages

● Evaluate the ethical and legal implications
of using computer systems

● Apply knowledge to real-world scenarios

End Point Students will be able to think like
computer scientists—breaking
down problems, designing and
refining efficient algorithms, and
applying suitable searching and
sorting techniques to solve real-
world computational problems
effectively.

These topics help students
succeed in both practical coding
questions and theory-based
exam papers. They build
essential problem-solving skills
and confidence in understanding
how software is developed,
tested, and run in real-world
environments.

This topic prepares students for
high-mark coding tasks in
assessments and builds strong
foundations for further
programming study at A Level or
in real-world applications.

Studying these topics equips students with a
solid understanding of how computer systems
work, how data is stored and shared, and the
wider impact of technology on society. It
prepares them for GCSE exams by building
core knowledge, critical thinking, and the
ability to apply concepts to real-world and
exam scenarios.

Prior
Knowledge

Year 7 - Computational Thinking
Year 8 - Search and Sort Algorithms
Year 7,8 and 9 - Programming
Fundamentals

Year 7 - Boolean Logic
Year 9 - AR and Software Testing

Year 9 - The use of 2D Arrays and
Functions

Year 10

Assessment
Objectives

AO1 - Demonstrate knowledge and understanding of the key concepts and principles of Computer Science. 30%

AO2 - Apply knowledge and understanding of the key concepts and principles of Computer Science. 40%

AO3 - Analyse problems in computational terms to make reasoned judgments and to design, program, evaluate and refine solutions. 30%

Assessment
Objectives
Covered

AO1
AO2
AO3

AO1
AO2
AO3

AO2
AO3

AO1
AO2
AO3

Assessment
Objectives
Covered with
Examples

AO1 - “State the name of each
of the following computational
thinking techniques”

AO2 - “Complete the merge
sort of the data by showing
each step of the process”

AO3 - “...Design the algorithm
using a flowchart.”

AO1 - “Complete the
description of programming
languages and translators by
writing the correct term
from the box in each space”

AO2 - “Complete the
following logic diagram for P
= (A OR B) AND NOT C by
drawing one
logic gate in each box”

AO3 - “Complete the
following test plan to check
whether the number of
nights is validated
correctly”

AO2 - “Give two ways that
the maintainability of this
program could be
improved.”

AO3 - “A Basic room costs
£60 each night. A Premium
room costs £80 each night.
 Create a function,
newPrice(), that takes the
number of nights and the
type of room
as parameters, calculates
and returns the price to pay.
 You do not have to validate
these parameters.”

AO1 - ‘Identify two events that take place
during the fetch-execute cycle’

AO2 - ‘Complete the table by writing the
missing denary, 8-bit binary or
hexadecimal values.’

AO3 - ‘Discuss the features, benefits and
drawbacks of each type of licence’

Command
Words/Exam
Technique
Covered

Describe
Explain
Compare
Design
Evaluate

Explain
Describe
Identify
Compare
Evaluate

Explain
Describe
Design
Implement
Evaluate
Identify
Compare

List
Describe
Discuss
Explain

Example Exam
Question
Explored In This
Term

“State, using the process in Fig.
2, the username for Rebecca
Ellis.”

“Tick one box to identify the
correct logic diagram for P =
NOT(A AND B).”

“Write an algorithm for the
updated program design
shown in question”

“Discuss the ethical, legal and
environmental impacts of this decision”

Key Words ● Decomposition
● Abstraction

● Validation
● Authentication

● Subprogram
● Function

● CPU
● Fetch-Decode-Execute

● Algorithm
● Pseudocode
● Flowchart
● Linear search
● Binary search
● Bubble sort
● Merge sort
● Efficiency

● Maintainability
● Syntax error
● Logic error
● Boolean
● AND
● Compiler
● Interpreter
● Debugger

● Call
● Procedure
● File handling
● Data validation
● Authentication
● Random number generation
● Array
● List

● Cache
● Binary
● Bandwidth
● Topology
● Router
● Encryption
● Sustainability
● Intellectual property

Year 11 2026-2027

Term 1 2 3 4

Topic
2.1.1 Computational thinking

2.3.1 Defensive design

2.3.2 Testing

2.2.3 Additional programming
techniques

2.2.3 Additional programming techniques

Exam Preparation and Recap.

2.1.2 Designing, creating and
refining algorithms

2.1.3 Searching and sorting
algorithms

2.4.1 Boolean logic

2.5.1 Languages

2.5.2 The Integrated
Development Environment
(IDE)

1.1.1 Architecture of the CPU

1.2.4 Data Storage

1.3.1 Networks and topologies

1.6 Ethical, Environmental, Cultural and
Legal Issues

Enquiry
Question "How can we use computational

thinking to design efficient
algorithms for solving real-world
problems?"

"How do defensive design
principles, testing methods,
and programming tools like
Boolean logic and IDEs
improve the development of
reliable and efficient
software?"

"How do additional
programming techniques like
subprograms, file handling,
and data validation enhance
the functionality and
reliability of software?"

"How do the design of computer systems
and the way data is stored, shared, and
used impact society and technology
today?"

Big Ideas/ Key
Concepts

● Clear Thinking Solves Complex
Problems

● Good Algorithms Save Time
and Resources

● Algorithms Must Be Designed,
Not Just Written

● Not All Algorithms Are Equal
● Thinking Like a Computer

Scientist Builds Better Solutions

● Reliability and Security in
Software

● Ensuring Software Works as
Intended

● Decision-Making Through
Logic

● Communication Between
Humans and Machines

● Tools That Support Effective
Software Development

● Subprograms
– Understanding and using
functions and procedures to
structure code for clarity
and reuse.

● File Handling
– Reading from and writing
to external files

● Data Validation and
Authentication
– Implementing input
validation techniques to
ensure data integrity.

● Random Number
Generation
– Using random functions in
programs

● The CPU as The Brain of the Computer
● Representing and Storing Information

Digitally
● Connecting Computers for

Communication and Sharing
● Responsible Computing in a Connected

World

● Using Arrays (or Lists)

– Creating, accessing,
updating, and iterating
through arrays or lists to
store collections of data
efficiently.

Key Knowledge
and Skills

● Apply computational thinking
techniques

● Design and represent
algorithms clearly

● Analyse and refine algorithms
for accuracy and efficiency

● Understand and compare
common searching and sorting
algorithms

● Select appropriate algorithms
based on context

● Apply defensive
programming techniques

● Understand and carry out
different types of testing

● Use Boolean logic to control
program flow

● Compare and evaluate
programming languages and
translators

● Use features of an IDE to
develop and debug code

● Design and use
subprograms to structure
and simplify code

● Read from and write to

external files using
programming techniques

● Identify and describe key components of
the CPU

● Explain how different types of data (text,
images, sound) are stored in binarY

● Compare different network topologies
and their advantages/disadvantages

● Evaluate the ethical and legal implications
of using computer systems

● Apply knowledge to real-world scenarios

Focus during
the additional
hour of learning
and rationale.

1.1.1 Architecture of the CPU

1.2.4 Data Storage: Numbers

These two topics (along with
1.3.1 and 1.3.2 [see Term 3
additional hours]) can take up
(on average) 40 marks of an 80
mark paper.

The additional hour will be
spent recapping these major
topics and also exploring them
through the lenses of past
paper exam material.

2.2 Programming
Fundamentals

Why this topic? Students
find this section of paper 2
extremely challenging and
difficult.

Why it's challenging:

This section requires actual
code understanding and
problem-solving ability —
not just theory. Specific
areas to be practically
explored include:

Variables, data types,
inputs/outputs

Arithmetic & Boolean
operations

Selection (IF statements),
iteration (loops)

String manipulation and file
handling

Subroutines
(functions/procedures)

1.3.1 Networks and
topologies

1.3.2 Wired and wireless
networks, protocols and
layers

1.5.1 OS

1.5.2 Utilities

These topics (although quite rich and vast
in content) have rarely made an
appearance in past papers. When they
have, they have been very low-level, AO1
style ‘fill in the blanks’ style questions.
Even then, students still struggle with
these two topics. The additional hours of
this term would be spent exploring the
tier 3 vocabulary associated with the
topics and applying them to exam style
questions.

End Point Students will be able to think like
computer scientists—breaking
down problems, designing and
refining efficient algorithms, and
applying suitable searching and

These topics help students
succeed in both practical coding
questions and theory-based
exam papers. They build
essential problem-solving skills

This topic prepares students for
high-mark coding tasks in
assessments and builds strong
foundations for further

Studying these topics equips students with a
solid understanding of how computer systems
work, how data is stored and shared, and the
wider impact of technology on society. It
prepares them for GCSE exams by building

sorting techniques to solve real-
world computational problems
effectively.

and confidence in understanding
how software is developed,
tested, and run in real-world
environments.

programming study at A Level or
in real-world applications.

core knowledge, critical thinking, and the
ability to apply concepts to real-world and
exam scenarios.

Prior
Knowledge

Year 7 - Computational Thinking

Year 8 - Search and Sort Algorithms

Year 7, 8, 9 Computer Programming

Year 7 - Boolean Logic

Year 9 - AR and Software Testing

Years 8 and 9 - Python
Programming

Year 7, 8 and 9 - Programming Year 7, 8 and 9 - Programming

Year 8 - Ethics

Year 7 - Data Storage

Year 8 - The role of the CPU

Year 9 - Networks

Assessment
Objectives

AO1 - Demonstrate knowledge and understanding of the key concepts and principles of Computer Science. 30%

AO2 - Apply knowledge and understanding of the key concepts and principles of Computer Science. 40%

AO3 - Analyse problems in computational terms to make reasoned judgments and to design, program, evaluate and refine solutions. 30%

Assessment
Objectives
Covered

AO1
AO2
AO3

AO1
AO2
AO3

AO2
AO3

AO1
AO2
AO3

Assessment
Objectives
Covered with
Examples

AO1 - “State the name of each
of the following computational
thinking techniques”

AO2 - “Complete the merge
sort of the data by showing
each step of the process”

AO3 - “...Design the algorithm
using a flowchart.”

AO1 - “Complete the
description of programming
languages and translators by
writing the correct term
from the box in each space”

AO2 - “Complete the
following logic diagram for P
= (A OR B) AND NOT C by
drawing one
logic gate in each box”

AO3 - “Complete the
following test plan to check

AO2 - “Give two ways that
the maintainability of this
program could be
improved.”

AO3 - “A Basic room costs
£60 each night. A Premium
room costs £80 each night.
 Create a function,
newPrice(), that takes the
number of nights and the
type of room
as parameters, calculates
and returns the price to pay.

AO1 - “Identify two events that take place
during the fetch-execute cycle.”

AO2 - “Convert the binary number
11001011 into denary.”

AO3 - “A second program needs to
perform the following tasks:
• Input a number from the user
• Double the number input and print the
result
• Repeat bullets 1 and 2 until the user
enters a number less than 0.
Write an algorithm for this program.”

whether the number of
nights is validated
correctly”

 You do not have to validate
these parameters.”

Command
Words/Exam
Technique
Covered

Describe
Explain
Compare
Design
Evaluate

Explain
Describe
Identify
Compare
Evaluate

Explain
Describe
Design
Implement
Evaluate
Identify
Compare

State
List
Draw
Describe
Explain
Discuss
Write

Example Exam
Question
Explored In This
Term

“Give two computational
thinking techniques that Taylor
has used, describing how they
have been used.”

“Draw the logic diagram for
the logic system P=A OR (B
AND C)

“Write an algorithm that
will identify whether the
data in the studentdata
array shows that
a letter has been sent home
or not for the student. The
algorithm should then
output either
“sent” (if a letter has been
sent) or “not sent” (if a
letter has not been sent).”

“Describe the difference between a LAN
and a WAN”

Key Words ● Decomposition
● Abstraction
● Algorithm
● Pseudocode
● Flowchart
● Linear search
● Binary search
● Bubble sort
● Merge sort
● Efficiency

● Validation
● Authentication
● Maintainability
● Syntax error
● Logic error
● Boolean
● AND
● Compiler
● Interpreter
● Debugger

● Subprogram
● Function
● Call
● Procedure
● File handling
● Data validation
● Authentication
● Random number generation
● Array
● List

● CPU
● Fetch-Decode-Execute
● Cache
● Binary
● Bandwidth
● Topology
● Router
● Encryption
● Sustainability
● Intellectual property

